标签 algorithm 下的文章

字符串匹配: KMP算法, BM_BC, BM_GS算法

字符串匹配是搜索算法的基础,也是数据结构中一个十分有用的算法分支,我在学习KMP和BMBC算法的时候就觉得听的云里雾里,但经过一些实操和分析不难发现,这几个算法都是很好理解,并且对算法有很务实启发的。

以下我从零开始梳理以下如何建立一个清晰,并且有一定模式的理解这两个算法的思路。


1. 什么是字符串匹配

从一个字符串中查询是否完全包含另一个字符串的过程。如果有则返回起始位置,无则匹配失败。 例: 在 "这是一个多美丽又遗憾的世界" 匹配 "美丽" 应该返回5. 匹配"太美丽" 失败。

前菜开始:


2. 直观解法 循环遍历

令 字符串 S = "这是一个多美丽又遗憾的世界" 模式串(待匹配子串) s = "美丽" 循环遍历S并且在每一次S[i]与 s[j=0]匹配时,依次比较 S[i++] 与 s[j++], 若成功则可以返回当前的 i-j 即为第一个字符所在的位置,失败则 i = i-j,再右移1位继续比较。

* 边界情况,当 i> m-n 时,宣告失败。 也就是说剩余可以配的元素已经不足够了,无需比较即告失败。 另外,约定查找失败时,返回-1;

算法示例:

int matchStr( char * S, char * s )
{
    size_t m = strlen(S), n = strlen(s);
    int i =0, j = 0;
    while( i < m-n+1 && j<n ){
        if( S[i] == s[j] ){
            i++;j++;
        }else{
            i -= j-1; // i = i-j+1
            j = 0;
        }
    }
    return j==n ? i-j : -1;
    // 当且仅当j与n相等时,模式串最后一位匹配成功
}
循环遍历的方式有什么问题呢? 那就是机械,无论如何都需要完整遍历S,并且每一次至少需要比对1次,而从渐进角度来说总体来说复杂度是达到O(m*n)。

接下来才是正餐:


3. 优化方向/算法策略

优化的可能性仔细分析一下,就是如何减少没必要的匹配。 首先我们看一下,模式串都有哪些可能性呢? (这里只需要考虑前缀,因为如果不是前缀重复,发生失配的时候一定是要从第一位开始比较的)

1 . 真前缀永不重复

a b c d e f g

2 . 单元素真前缀重复 / 真·一元前缀字串 重复

a a a a b c a a e

3 . 真·多元前缀字串重复

a b c a b c a b c a a b

那么接下来,分别看一下这几种不同的模式串,分别有怎样的优化方式。

- 阅读剩余部分 -

SLT版本 string,queue


/*
 * 祖玛 Zuma
 * 
 * hello@shezw.com 2020.06.29
 */

#include <iostream>
#include <string>
#include <queue>

using namespace std;

struct opr{
    int t;
    char c;
    opr( int target, char color ){
        t = target;
        c = color;
    }
};

void checkElimination( string & balls, int cursor ){
    if( balls.empty() ){ return; }
    int i = 1; int l = cursor, r = cursor, len = balls.size();
    while( cursor-i > -1 ){
        if( balls[cursor-i] != balls[cursor] ) break;
        l = cursor - (i++);
    }
    i = 1;
    while( cursor+i < len ){
        if( balls[cursor+i] != balls[cursor] ) break;
        r = cursor + (i++);
    }
    if( r - l > 1 ){
        balls.erase( l,r-l+1 );
        if( balls.size()>2 ) checkElimination( balls, l ); // 删除[l,r]区间后 如果存在继续消除可能时,原右侧必不为空,右侧第一个将取代原L。
    }
}

int main()
{
    string balls; int count;    // 主要变量
    int t; char c;              // 缓存变量

    cin>>balls;                 // 读取初始化彩球
    cin>>count;                 // 读取初始化数量

    queue<opr> oprs;            // 操作队列

    while( cin >> t ){          // 读取数字
        cin >> c;               // 读取颜色
        oprs.push( opr(t,c) );  // 压入队列
    }

    while( !oprs.empty() ){
        // cout<< oprs.front().t << " " << oprs.front().c << endl;
        t = oprs.front().t;
        c = oprs.front().c;
        balls.insert( t, 1, c );
        checkElimination( balls, t );
        oprs.pop();
        cout << (balls.empty() ? "-" : balls) << endl;
    }
    // cout << oprs.size() << endl;
    // cout<< balls << endl << count << endl << oprs.front().c << endl;
}

由于清华judge是不允许使用SLT的,所以使用自建QUEUE来完成。

非SLT版

/*
 * 祖玛 Zuma
 * 
 * hello@shezw.com 2020.06.29
 */

#include <iostream>
#include <string>

using namespace std;


struct opr{
    int t;
    char c;
    opr(){}
    opr( int target, char color ){
        t = target;
        c = color;
    }
};

template <typename T>
struct qe{
    qe<T>* prev;
    qe<T>* next;
    T data;
    qe(){}
    qe( T d, qe<T>* p = NULL, qe<T>* n = NULL ){
        data = d; prev = p; next = n;
    }
}; 

template <typename T>
class queue{ // 专为本算法特别定制队列,简化版
private:
    int _size = 0;
public:
    qe<T>* _head;
    qe<T>* _tail;

    queue(){
        _size = 0;
        _head = new qe<T>;
        _tail = new qe<T>;
        _head->next = _tail; _head->prev = NULL;
        _tail->prev = _head; _tail->next = NULL;
    }
    ~queue(){
    }
    int size(){return _size;}

    void push( T data ){

        qe<T>* newQe = new qe<T>( data, _tail->prev, _tail );
        _tail->prev->next = newQe;
        _tail->prev = newQe;
        _size++;
    }

    void pop(){

        if( empty() ) return;

        _head->next = _head->next->next;
        delete _head->next->prev;
        _head->next->prev = _head;
        _size--;
    }

    bool empty(){
        return _size == 0;
    }

    const T & front(){
        return _head->next->data;
    }

};



void checkElimination( string & balls, int cursor ){
    if( balls.empty() ){ return; }
    int i = 1; int l = cursor, r = cursor, len = balls.size();
    while( cursor-i > -1 ){
        if( balls[cursor-i] != balls[cursor] ) break;
        l = cursor - (i++);
    }
    i = 1;
    while( cursor+i < len ){
        if( balls[cursor+i] != balls[cursor] ) break;
        r = cursor + (i++);
    }
    if( r - l > 1 ){
        balls.erase( l,r-l+1 );
        if( balls.size()>2 ) checkElimination( balls, l ); // 删除[l,r]区间后 如果存在继续消除可能时,原右侧必不为空,右侧第一个将取代原L。
    }
}

int main()
{
    string balls; int count;    // 主要变量
    int t; char c;              // 缓存变量

    cin>>balls;                 // 读取初始化彩球
    cin>>count;                 // 读取初始化数量

    queue<opr> oprs;            // 操作队列

    while( cin >> t ){          // 读取数字
        cin >> c;               // 读取颜色
        oprs.push( opr(t,c) );  // 压入队列
    }

    while( !oprs.empty() ){
        // cout<< oprs.front().t << " " << oprs.front().c << endl;
        t = oprs.front().t;
        c = oprs.front().c;
        balls.insert( t, 1, c );
        checkElimination( balls, t );
        oprs.pop();
        cout << (balls.empty() ? "-" : balls) << endl;
    }
    // cout << oprs.size() << endl;
    // cout<< balls << endl << count << endl << oprs.front().c << endl;
}

编译结果 95/100 最坏结果 204ms 14388KB。

这样看来还需要进一步优化。 20200629

格雷码

数据结构、算法与应用 第一张练习 26

两个代码之间的 海明距离 (Hamming distance) 是对应位不等的数量。 例如:100和010的海明距离是2。 一个(二进制)格雷码是一个代码序列,其中任意相邻的两个代码之间的海明距离是1。 子集生成的序列 000,100,010,001...111 不是格雷码,因为100,010海明距离是2。 而三位代码序列 000,100,110,010,011,111,101,001是格雷码。

在代码序列的一些应用中,从一个代码到下一个代码的代价取决于它们的海明距离。因此我们希望这个代码序列是格雷码。格雷码可以用代码变化的位置序列简洁地表示。 对于上面的格雷码,位置序列是1,2,1,3,1,2,1.

令g(n)是一个n元素的格雷码的位置变化序列。以下是g的递归定义:

    1                   n=1
    g(n-1),n,g(n-1)     n>1

注意这个是位置变化序列,并不是格雷码生成。

以下为算法

递归版:

#include <iostream>
#include <cmath>
/*
 *  格雷码序列数量是 2^n,相应的变化序列数量是 2^n - 1
 */
int * GrayCodeChangeSequence( int n ){
    int len   = pow(2,n)-1;
    int * arr = new int[len];
    if( n<2 ){ arr[0]=1; return arr; }

    int half  = (len-1)>>1;
    int * half_arr = GrayCodeChangeSequence( n-1 );

    for( int i=0; i<half; i ++ ){
        arr[i] = half_arr[i];
    }
    arr[half] = n;
    for( int i=0; i<half; i ++ ){
        arr[i+half+1] = half_arr[i];
    }

    return arr;
}

void testGCCS( int n ){

    int * b = GrayCodeChangeSequence(n);
    for( int i = 0; i< pow(2,n)-1 ; i++ ){
        std::cout << b[i] << ' ';
    }
    std::cout << endl;
    delete[] b;
}

int main()
{
    testGCCS(1);
    testGCCS(2);
    testGCCS(3);
    testGCCS(4);
    testGCCS(5);
}

测试分别输出:

1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

优化

实际上格雷码修改序列生成和斐波那契数列的生成效率是需要进一步优化的,原因在于每一次收到递归结果,都需要遍历一次结果并且覆盖到当前的序列中。从渐进意义上来说,复杂度是O(n2) 而且相对于序列的长度增长渐进意义上远大于n,这个时候如果能够在一次遍历的情况下配合少量计算那么可以将复杂度降低至O(n)

- 阅读剩余部分 -

最长公共子序列是一个经典的基础算法问题 在两个序列中 如果序列1中的元素a也存在于序列2,则认为a是1,2的公共元素。 当序列3中的每一个元素都能够满足在不改变次序的情况下依次属于1,2,那么则认为3是1,2的公共子序列。多个公共子序列中,元素最多的即为最长公共子序列。

在学堂在线的算法课程中,有比较详细的课程讲述这个算法的构思。但是没有给出具体的实现,这里来自己实现一下。

首先使用表格模拟排列组合的所有情况: 以{a,b,c,d,e},{a,b,q,c,b}为例:

A\B a b q c b
a 1 1 1 1 1
b 1 2 2 2 2
c 1 2 2 3 3
d 1 2 2 3 3
e 1 2 2 3 3

实际上看到这样的填充,直觉上就应该反应出来,使用二维数组来解决。 其中当 A[i]!=B[j]时,取左方或者上方更大的,而A[i]==B[j]的时候,取T[i-1][j-1] + 1。这里i=0或j=0的时候就不方便了,所以给矩阵默认增加一行 0 行。即

A\B 0 a b q c b
0 0 0 0 0 0 0
a 0 1 1 1 1 1
b 0 1 2 2 2 2
c 0 1 2 2 3 3
d 0 1 2 2 3 3
e 0 1 2 2 3 3

- 阅读剩余部分 -

数据结构、算法与应用 C++语言描述

第一章 习题25

子集生成法(Subset Generation)

三元素集{a,b,c}的子集是:{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}。 这些子集又可以使用01序列来表示,分别是000,100,010,001,110,101,011,111。 0/1分别代表着 含有/不含 原集合中的对应元素。

输出n个元素的所有子集(以01序列的形式)。

在网上看了一下基本上最终输出的都是数组,但并没有按照题目输出01序列。所以我这里严格按照题目来解。

分析

子集生成是一个完全排列组合问题,包括退化情况空集,以及极限情况自身。 其他的情况分别是[1,n)个元素的任意组合。 所以如果递归的话,也就是每一次元素数量+1 或者是-1,如果不是输出01序列,那么输出的元素个数就刚好等于递归中的n。输出序列的时候,只需要在其他位置补0即可。而补0逻辑也可以反过来考虑,即默认是n个0 e.g. 0000,随着循环的i改变,在不同的位置上填1e.g. 0001,0010,0100,1000,这样更加便捷。

至此,已经有了算法的模型了:

/* Subset Generation */
#include <iostream>
#include <string>

using namespace std;

template <typename T>
void subsetGeneration( T* const A, int len, string code = "", int focus = 0 ){

    if( focus > len ) return;
    if( focus == len ){ cout << string(len,'1') << endl; return; }
    if( focus == 0 ){ cout << string(len,'0') << endl; }

    if( code == "" ){ code = string(len,'0'); }

    code[focus] = '1';
    for( int i = focus; i<len; i++ ){
        code[i] = '1';
        cout << code << endl;
        code[i] = '0';
    }

    subsetGeneration( A, len, code, focus + 1 );
}
int main(){

    subsetGeneration( "abcd", 4 );
    return 0;
}

思考1 上述算法已经成功解题,但是思维略显复杂,直觉上就感觉不是一个优质解。

- 阅读剩余部分 -