数学二公式
\lim_{x\to0} \frac{\sin x}{x} = 1
\lim_{x\to oo} (1+\frac{1}{x})^x = e
\lim_{x\to 0} (1+x)^\frac{1}{x} = e
x\rightarrow 0
(1+x)^\alpha \implies 1+\alpha x
1+\alpha x \implies (1+x)^\alpha
\sin x \implies \tan x \implies x
e^x \implies 1+x
x \implies e^x - 1
a^x = e^{x\ln a}
a^x - 1 = e^{x\ln a} - 1 = x\ln a
a^x = (e^{\ln a})^x = e^{x\ln a}
({a^b})^c = a^{bc} = (a^c)^b
1+\sin x \Rightarrow 1 + x \Rightarrow e^x
\ln (1+x) \implies x
x' = C
C' = 0
(x^n)' = nx^{n-1}
(a^x)' = a^x \ln a
(e^x)' = e^x \ln e = e^x
(\log_a x )' = \frac{1}{x\ln a }
(\ln x )' = \frac{1}{x}
(\sin x)' = \cos x
(\cos x)' = -\sin x
(\tan x)' = \sec^2 x
(\cot x)' = -csc^2x
(\sec x)' = \sec x \tan x
(\csc x)' = -\csc x \cot x
(\arcsin x)' = \frac{1}{\sqrt{1-x^2} }
(\arccos x)' = -\frac{1}{\sqrt{1-x^2} }
(\arctan x)' = \frac{1}{1+x^2 }
(arccot x)' = -\frac{1}{1+x^2 }
(f(x) + \mu(x))' = f(x)' + \mu(x)'
(f(x)\mu(x))' = f(x)'\mu(x) + f(x)\mu(x)'
(C f(x))' = C f(x)'
( \frac{u}{v} )' = \frac{u'v - uv'}{v^2}
(uv)' = u'v + uv'
(uvw)' = u'vw + uv'w + uvw'
x\rightarrow a
f(x)\rightarrow 0, g(x)\rightarrow 0 或 f(x)\rightarrow oo, g(x)\rightarrow oo
f(x)' g(x)'
g(x)' \neq 0
\lim_{x\to a} \frac{f(x)}{g(x)}
\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)'}{g(x)'}
sin ^2 \alpha = \frac{1-cos2\alpha}{2}
cos ^2 \alpha = \frac{1+cos2\alpha}{2}
sin \frac{\alpha}{2} = \pm \sqrt{ \frac{1-cos\alpha}{2} }
cos \frac{\alpha}{2} = \pm \sqrt{ \frac{1+cos\alpha}{2} }
sin(\alpha \pm \beta ) = sin\alpha \cos\beta \pm cos\alpha sin\beta
cos(\alpha \pm \beta ) = cos\alpha \cos\beta \mp sin\alpha sin\beta
sin2\alpha = 2sin\alpha cos\beta
cos2\alpha = cos^2\alpha - sin^2\alpha = 1 - 2sin^2\alpha = 2cos^2\alpha - 1
sin\alpha cos\beta = \frac{1}{2} [ sin( \alpha + \beta ) + sin( \alpha - \beta ) ]
cos\alpha cos\beta = \frac{1}{2} [ cos( \alpha + \beta ) + cos( \alpha - \beta ) ]
sin\alpha sin\beta = -\frac{1}{2} [ cos( \alpha + \beta ) - cos( \alpha - \beta ) ]
sin \alpha + sin \beta = 2 sin \frac{\alpha+\beta}{2} cos \frac{\alpha-\beta}{2}
cos \alpha + cos \beta = 2 cos \frac{\alpha+\beta}{2} cos \frac{\alpha-\beta}{2}
a^m * a^n = a^{m+n}
(a^m)^n = a^{m*n}
(ab)^n = a^n * b^n
a^0 = 1
a^{-n} = \frac{1}{a^n}
a^{ \frac{m}{n} } = \sqrt]{a^m}
a^b = n \Leftrightarrow b = \log_a n
\lg N = \log_{10} N
\ln N = \log_e N
a^{\log_aN} = N
\log_a(M*N) = \log_aM + \log_aN
\log_a{ \frac{M}{N} } = \log_aM - \log_aN
\log_a(M^b) = b{\log_a(M)}
\log_bN = \frac{ \log_aN }{ \log_ab } ( a,b >0, a,b \neq 1, N>0 )
文章地址: 数学二公式 - Sprite keep learning
最近回复